The solid-state packing involves cation-anion H bonding between amine groups and nitrate oxygen atoms $\quad\left[\mathrm{N}(1)-\mathrm{O}\left(7^{\text {i }}\right)=2.897(5) ; \quad \mathrm{N}(4)-\mathrm{O}\left(6^{\text {ii }}\right)=\right.$ 2.963 (6) $\AA]^{*}$ to form zigzag chains of cations and anions which are related by translation along x. The cations of this chain are also directly related by H-bonding between an amine group and a carboxyl oxygen atom $[\mathrm{N}(4)-\mathrm{O}(2$ iii $)=2.904$ (4) $\AA]$. Another set of amine-carboxyl H -bonds $\left[\mathrm{N}(1)-\mathrm{O}\left(4^{\text {iv }}\right)=\right.$ $3.007(5) \AA]$ occurs between cations related by y translation. A bifurcated H -bond occurs between an imidazole NH group of one cation and carboxyl oxygen atoms of two different cations $\left[\mathrm{N}(3)-\mathrm{O}\left(2^{v}\right)=\right.$ $2.970(5) ; \mathrm{N}(3)-\mathrm{O}\left(4^{\mathrm{vi}}\right)=2.888(4) \AA$], which are related to the first by space-group symmetry coupled with x and y translations, respectively.
*Symmetry code: (i) $\mathrm{O}(7)$ at x, y, z; (ii) $\mathrm{O}(6)$ at $x-1, y, z$; (iii) $\mathrm{O}(2)$ at $x-1, y, z$; (iv) $\mathrm{O}(4)$ at $x, y-1, z$; (v) $\mathrm{O}(2)$ at $1-x, \frac{1}{2}+y$, $-z$; (vi) $\mathrm{O}(4)$ at $-x, y-\frac{1}{2},-z$.

Funding from NSF-EPSCOR, grant ISP 8011447, and the state of Arkansas is gratefully acknowledged.

References

Bagger, S., Gibson, K. \& Sorensen, C. S. (1972). Acta Chem. Scand. 26. 2503-2510.
Candlin, R. \& Harding, M. M. (1970). J. Chem. Soc. A, pp. 384-393.
Enraf-Nonius (1979). Structure Determination Package. EnrafNonius, Delft.
Fraser. K. A. \& Harding. M. M. (1967). J. Chem. Soc. A, pp. 415-420.
Hamilton, W. C. (1965). Acta Crı'st. 18. 502-510.
Harding. M. M. \& Long. H. A. (1968). J. Chem. Soc. A, pp. 2554-2559.
Hoggard, P. E. (1981). Inorg. Chem. 20, 415-420.
Ibers, J. A. \& Holm, R. H. (1980). Science, 209, 223-235.
International Tables for X-ray. Crustallography. (1974). Vol. IV. Birmingham: Kynoch Press.
Lau, S. J. \& Sarkar, B. (1971). J. Biol. Chem. 246. 5938-5943.
Martin, R. B. (1979). In Metal Ions in Biological Sistems, Vol. IX, edited by H. Sigel, ch. 1. New York: Marcel Dekker.
Meester. P. de \& Hodgson. D. J. (1977). J. Chem. Soc. Dalıon Trans. pp. 1604-1607.

Structure of (Benzenethiolato)(2,3,7,8,12,13,17,18-octaethylporphinato)iron(III), [$\mathrm{Fe}\left(\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{~N}_{4}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}\right)$]

By Kathleen M. Miller and Charles E. Strouse*
J. D. McCullough Laboratory for X-ray Crystallography, Department of Chemistry and Biochemistry, University' of California, Los Angeles, California 90024, USA

(Received 9 September 1983; accepted 4 April 1984)

Abstract. $M_{r}=697.78$, triclinic, $P \overline{1}, a=10.246$ (4), $b=13.040$ (4) , $\quad c=14.900(5) \AA, \quad \alpha=107.82$ (4),$\quad \beta$ $=73.00(4), \gamma=101.98(5)^{\circ}, V=1797.12 \AA^{3}, Z=2$, $D_{m}=1.30(1), \quad D_{x}=1.29 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{MoK} K)=$ $0.7107 \AA, \mu=0.508 \mathrm{~mm}^{-1}, F(000)=742, T=117 \mathrm{~K}$, $R=0.069, R_{w}=0.076$ for 4676 unique reflections. In the five-coordinate complex $\mathrm{Fe}(\mathrm{oep})\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}\right)$ the Fe atom is displaced 0.466 (1) \AA from the plane of the four N atoms and 0.512 (1) \AA from the plane of the 24 -atom porphyrin core. The $\mathrm{Fe}-\mathrm{S}$ distance is 2.299 (3) \AA and the average $\mathrm{Fe}-\mathrm{N}$ distance is 2.057 (6) \AA.

Introduction. Studies of the hemoprotein, cytochrome P-450, and of small-molecule analogues of the heme active site have suggested that a thiolate ligand is coordinated to the heme center of the enzyme (Blumberg \& Peisach, 1971; Collman \& Groh, 1982; Dolphin, 1979). Accurate and unambiguous structural

[^0]0108-2701/84/081324-04\$0I. 50
parameters have been reported for only two thiolateligated ferric porphyrin complexes, $\mathrm{Fe}(\mathrm{ppixdme})(p$ $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}$) (Tang, Koch, Papaefthymiou, Foner, Frankel, Ibers \& Holm, 1976) and $\left[\mathrm{Fe}(\operatorname{tpp})\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}\right)_{2}\right]^{-}$ (Byrn \& Strouse, 1981) (ppixdme is protoporphyrin IX dimethyl ester and tpp is tetraphenylporphinato). Herein is reported the structure of a third iron porphyrin thiolate complex, $\mathrm{Fe}($ oep $)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}\right)$.

Experimental. A solution of $50 \mathrm{mg}[\mathrm{Fe}(\mathrm{oep})]_{2} \mathrm{O}$ in 20 ml benzene was stirred under dinitrogen with $12.5 \mathrm{ml} \mathrm{15} \mathrm{\%} \quad \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{v} / \mathrm{v})$. After one hour, 2.5 ml benzenethiol was added with rapid stirring. The organic phase was separated, and crystallization was achieved by slow evaporation under a stream of dinitrogen, Purple, rectangular parallelepiped single crystal. $0.20 \times 0.25 \times 0.28 \mathrm{~mm} . D_{m}$ by flotation in KI/water. Picker diffractometer equipped with a variable temperature device (Strouse, 1976), Zr filter. Unit-cell parameters by least-squares refinement of 10 reflections
© 1984 International Union of Crystallography

Table 1. Positional parameters and $U_{\text {eq }}\left(\AA^{2}\right)$ values with estimated standard deviations for the nonhydrogen atoms

	$U_{\mathrm{eq}}=\frac{1}{6 \pi^{2}} \sum_{l} \sum_{j} \beta_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j} .$			
	x	y	z	$U_{\text {eq }}\left(\times 10^{3}\right)$
Fe	$0 \cdot 3033$ (1)	1-1261 (1)	$0 \cdot 3043$ (1)	20 (1)
Porphyrin core atoms				
C(1)	0.2352 (7)	1.0334 (6)	0.4825 (5)	19 (7)
C(2)	0.2560 (8)	1.0609 (6)	0.5802 (5)	25 (8)
C(3)	0.3457 (8)	1.1532 (6)	0.5893 (5)	24 (7)
C(4)	0.3815 (7)	1.1822 (6)	0.4984 (6)	24 (8)
C(5)	0.4741 (8)	1.2715 (6)	0.4783 (6)	25 (8)
C(6)	0.5201 (8)	1.2954 (6)	0.3891 (6)	30 (8)
C(7)	0.6269 (8)	1.3836 (6)	0.3677 (7)	37 (9)
C(8)	0.6518 (8)	1.3740 (7)	0.2714 (7)	41 (10)
C(9)	0.5597 (8)	1.2811 (7)	0.2340 (6)	35 (9)
C(10)	0.5484 (8)	1.2469 (7)	0.1395 (7)	39 (10)
C(11)	0.4535 (7)	$1 \cdot 1630$ (6)	$0 \cdot 1026$ (6)	26 (8)
C(12)	0.4412 (8)	1.1318 (7)	$0 \cdot 0024$ (6)	30 (8)
C(13)	0.3376 (8)	1.0481 (7)	-0.0030 (6)	30 (8)
C(14)	0.2881 (8)	1.0270 (6)	0.0914 (5)	24 (8)
C(15)	0.1875 (8)	0.9449 (6)	$0 \cdot 1156$ (5)	26 (8)
C(16)	0.1463 (7)	0.9157 (6)	$0 \cdot 2015$ (5)	22 (7)
C(17)	0.0516 (7)	0.8216 (6)	0.2201 (6)	22 (8)
C(18)	0.0437 (7)	0.8217 (6)	0.3124 (5)	19 (7)
C(19)	0.1314 (7)	0.9161 (5)	0.3513 (5)	18 (7)
C(20)	$0 \cdot 1499$ (7)	0.9467 (6)	0.4449 (5)	23 (7)
N(1)	0.3139 (6)	1.1090 (4)	0.4343 (4)	19 (6)
N(2)	0.4796 (6)	1.2348 (5)	0.3067 (5)	26 (6)
N(3)	0.3604 (6)	1.0979 (5)	0.1550 (4)	22 (6)
$N(4)$	$0 \cdot 1955$ (6)	0.9723 (5)	0.2824 (4)	18 (6)
Ethyl atoms				
C(21)	0.1889 (8)	0.9956 (6)	0.6524 (5)	27 (8)
C(22)	0.2661 (9)	0.9006 (7)	0.6372 (6)	37 (9)
C(23)	0.4099 (8)	1.2103 (7)	0.6735 (6)	34 (8)
C(24)	0.5519 (9)	$1 \cdot 1782$ (8)	0.6582 (6)	47 (10)
C(25)	0.6967 (9)	1.4657 (6)	0.4398 (7)	41 (9)
C(26)	0.8129 (9)	1.4217 (6)	0.4569 (7)	44 (10)
C(27)	0.7613 (13)	1.4397 (8)	0.2093 (8)	76 (14)
C(28)	0.6960 (14)	1.5038 (10)	0.1729 (10	110 (18)
C(29)	0.5261 (9)	$1 \cdot 1851$ (7)	-0.0744 (6)	38 (9)
C(30)	0.4800 (10)	1.2920 (7)	-0.0664 (6)	45 (10)
C(31)	0.2781 (9)	0.9898 (7)	-0.0893 (5)	34 (8)
C(32)	0.1605 (9)	1.0451 (8)	-0.0872 (6)	46 (10)
C(33)	-0.0164 (8)	0.7392 (6)	0.1464 (5)	26 (8)
C(34)	0.0696 (10)	0.6513 (7)	0.0845 (7)	49 (10)
C(35)	-0.0367 (7)	0.7388 (6)	0.3656 (6)	26 (8)
$\mathrm{C}(36)$	0.0517 (8)	0.6588 (6)	0.3666 (6)	34 (8)
Benzenethiolate atoms				
S	0.1336 (2)	1.2375 (2)	$0 \cdot 3607$ (2)	3! (2)
C(37)	0.1668 (9)	1.3032 (7)	0.2673 (6)	36 (9)
C(38)	0.0984 (15)	1.2639 (9)	$0 \cdot 1946$ (8)	88 (16)
C(39)	0.1152 (31)	1.3167 (19)	$0 \cdot 1260$ (13)	174 (37)
C(40)	0.2073 (33)	1.4082 (21)	$0 \cdot 1270$ (14)	171 (41)
C(41)	0.2780 (16)	1.4515 (12)	$0 \cdot 1965$ (13)	113 (21)
C(42)	0.2581 (10)	1.3972 (8)	0.2697 (8)	61 (12)

$\left(9.50 \leq 2 \theta \leq 19.78^{\circ}\right.$). $\theta-2 \theta$ scan, $2.0^{\circ} \mathrm{min}^{-1}, 2 \theta_{\text {max }}$ $=45^{\circ}$ for the range $0 \leq h \leq 11,-14 \leq k \leq 13$, $-15 \leq l \leq 16$. Three reflections monitored every 100 reflections with no significant variation. 4676 unique data, 3100 with $I>3 \sigma(I)$, 001 reflection inaccurately measured and deleted, 1576 considered unobserved. Lorentz, polarization and absorption corrections applied (range 0.96 to 0.94). Structure solved by heavy-atom method. All non-hydrogen atoms located on Fourier and difference Fourier maps; H atoms located on difference Fourier maps or calculated. Anisotropic thermal parameters for all non-hydrogen atoms; isotropic thermal parameters for H fixed at

Table 2. Bond distances (\AA) and interbond angles $\left({ }^{\circ}\right)$, with estimated standard deviations

$\mathrm{Fe}-\mathrm{S}$	$2 \cdot 299$ (3)	$\mathrm{N}(1)-\mathrm{Fe}-\mathrm{S}$	99.3 (2)
		$\mathrm{N}(2)-\mathrm{Fe}-\mathrm{S}$	102.7 (2)
$\mathrm{Fe}-\mathrm{N}(1)$	2.052 (6)	$\mathrm{N}(3)-\mathrm{Fe}-\mathrm{S}$	$106 \cdot 8$ (2)
$\mathrm{Fe}-\mathrm{N}(2)$	2.054 (6)	$N(4)-\mathrm{Fe}-\mathrm{S}$	$103 \cdot 5$ (2)
$\mathrm{Fe}-\mathrm{N}(3)$	2.062 (6)		
$\mathrm{Fe}-\mathrm{N}(4)$	$2 \cdot 059$ (6)	$\mathrm{N}(1)-\mathrm{Fe}-\mathrm{N}(2)$	87.5 (2)
		$\mathrm{N}(1)-\mathrm{Fe}-\mathrm{N}(4)$	87.0 (2)
C(37)-S	1.766 (8)	$\mathrm{N}(2)-\mathrm{Fe}-\mathrm{N}(3)$	87.0 (2)
		$\mathrm{N}(4)-\mathrm{Fe}-\mathrm{N}(3)$	86.8 (2)
$\mathrm{C}(1)-\mathrm{N}(1)$	1.379 (9)	$\mathrm{N}(1)-\mathrm{Fe}-\mathrm{N}(3)$	153.9 (2)
$\mathrm{C}(4)-\mathrm{N}(1)$	1.363 (9)	$\mathrm{N}(2)-\mathrm{Fe}-\mathrm{N}(4)$	153.8 (2)
$\mathrm{C}(6)-\mathrm{N}(2)$	1.368 (10)		
$\mathrm{C}(9)-\mathrm{N}(2)$	1.373 (9)	$\mathrm{C}(37)-\mathrm{S}-\mathrm{Fe}$	102.5 (3)
C(11)-N(3)	1.369 (9)		
$\mathrm{C}(14)-\mathrm{N}(3)$	1.375 (9)	$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{Fe}$	126.0 (5)
$\mathrm{C}(16)-\mathrm{N}(4)$	1.381 (9)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Fe}$	127.1 (5)
$\mathrm{C}(19)-\mathrm{N}(4)$	1.374 (9)	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Fe}$	124.9 (5)
		$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{Fe}$	127.9 (5)
C(1)-C(20)	1.358 (10)	$\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{Fe}$	126.7 (5)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.391 (10)	$\mathrm{C}(14)-\mathrm{N}(3)-\mathrm{Fe}$	125.7 (5)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.383 (11)	$\mathrm{C}(19)-\mathrm{N}(4)-\mathrm{Fe}$	127.1 (5)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.373 (11)	$\mathrm{C}(16)-\mathrm{N}(4)-\mathrm{Fe}$	$126 \cdot 1$ (5)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.396 (11)		
$\mathrm{C}(14)-\mathrm{C}(15)$	1.378 (10)	$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(1)$	105.9 (6)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.370 (10)	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(9)$	$105 \cdot 5$ (6)
$\mathrm{C}(19)-\mathrm{C}(20)$	1.387 (10)	$\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{C}(14)$	105.7 (6)
		$\mathrm{C}(19)-\mathrm{N}(4)-\mathrm{C}(16)$	$105 \cdot 3$ (6)
C(1)-C(2)	1.457 (10)		
C(3)-C(4)	1.441 (10)	$\mathrm{C}(20)-\mathrm{C}(1)-\mathrm{N}(1)$	125.1 (7)
C(6)-C(7)	1.456 (10)	$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	124.7 (7)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.445 (11)	$N(2)-C(6)-C(5)$	124.9 (7)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.459 (11)	$N(2)-C(9)-C(10)$	124.3 (8)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.440 (10)	$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(10)$	124.8 (7)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.442 (10)	$\mathrm{N}(3)-\mathrm{C}(14)-\mathrm{C}(15)$	123.6 (7)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.438 (9)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{N}(4)$	123.5 (7)
		$\mathrm{N}(4)-\mathrm{C}(19)-\mathrm{C}(20)$	$124 \cdot 3$ (6)
C(2)-C(3)	1.351 (10)		
$\mathrm{C}(7)-\mathrm{C}(8)$	1.352 (11)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	109.9 (6)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.356 (11)	$N(1)-C(4)-C(3)$	110.6 (6)
C(17)-C(18)	1.353 (10)	$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	110.3 (7)
		$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(8)$	111.0 (7)
		$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	110.7 (7)
		$\mathrm{N}(3)-\mathrm{C}(14)-\mathrm{C}(13)$	110.3 (7)
		$N(4)-C(16)-C(17)$	110.4 (6)
		$N(4)-C(19)-C(18)$	$110 \cdot 5$ (6)

$U_{\text {iso }}=0.0253 \AA^{2}$. Full-matrix least-squares refinement based on F with max. $\sin \theta / \lambda=0.54 \AA^{-1}$. Refinement of 433 parameters converged to $R_{w}=$ $0.076, w=1 / \sigma^{2}\left(F_{\partial}\right)$, error of fit $S=2 \cdot 29$. $(\Delta / \sigma)_{\text {max }}$ $=0.30$. Max. height $2.36 \mathrm{e}^{-3}$ in final difference Fourier synthesis. Atomic scattering factors and anomalous-dispersion corrections from International Tables for X-ray Crystallography (1974). All calculations performed on a UCLA Departmental DEC VAX 11/780 with the UCLA Crystallographic Package (1983) (locally edited versions of CARESS, PROFILE, MULTAN, ORFLS, ORFFE, ABSORB and ORTEP).

The largest features in the difference map were two peaks of height 2.36 and $1.02 \mathrm{e}^{-3}$, located near the $\mathrm{C}(27)-\mathrm{C}(28)$ ethyl group; these C atoms also displayed large thermal parameters. This evidence suggests disorder of this moiety. Attempts to correct for the disorder with half-weighted models were unsuccessful. Disorder in peripheral porphyrin substituents has been observed in other structures (Hamor, Caughy \& Hoard, 1965; Hoard, Hamor, Hamor \& Caughy, 1965; Koenig, 1965; Little \& Ibers, 1974).

Discussion. Atomic coordinates and equivalent isotropic temperature factors are listed in Table 1 and bond lengths and angles are given in Table 2.* An ORTEP drawing is shown in Fig. 1 with the atomnumbering scheme, and a packing diagram is displayed in Fig. 2. The bond distances and bond angles within the porphyrin core are similar to those of other reported octaethylporphyrin structures (Cullen \& Meyer, 1976; Einstein \& Willis, 1978; Masuda, Taga, Osaki, Sugimoto, Yoshida \& Ogoshi, 1980; Scheidt \& Geiger, 1982; Takenaka, Sasada, Watanabe, Ogoshi \& Yoshida, 1972). The $\mathrm{FeN}_{4} \mathrm{~S}$ moiety has the pyramidal

[^1]

Fig. 1. Molecular structure showing the numbering scheme (50\% probability ellipsoids). H atoms and selected atom labels have been omitted for clarity.

Fig. 2. Packing diagram down the c axis, with the b axis vertical.
structure found for other five-coordinate, high-spin $\mathrm{Fe}^{\text {III }}$ porphyrin complexes (Hoard, Cohen \& Glick, 1967; Hoffman, Collins, Day \& Fleischer, 1972). The Fe-N distances range from 2.052 (6) to 2.062 (6) \AA, with a mean distance of 2.057 (6) \AA. The Fe atom is displaced 0.466 (1) \AA from the N_{4} plane and 0.512 (1) \AA from the mean porphyrin plane toward the axial thiolate ligand. These values are in the range reported for other five-coordinate, $\mathrm{Fe}^{\mathrm{III}}$ porphyrin complexes (Cullen \& Meyer, 1976; Hoard, 1971; Scheidt, 1977; Scheidt \& Reed, 1981), and, in particular, are similar to the distances reported for the five-coordinate $\mathrm{Fe}^{11 I}$ porphyrin thiolate complex, $\mathrm{Fe}($ ppixdme $)\left(p-\mathrm{NO}_{2} \mathrm{C}_{6}-\right.$ $\mathrm{H}_{4} \mathrm{~S}$) (Tang, Koch, Papaefthymiou, Foner, Frankel, Ibers \& Holm, 1976). In this complex, the average $\mathrm{Fe}-\mathrm{N}$ distance is 2.064 (18) \AA and the Fe displacements from the N_{4} plane and the mean porphyrin plane are 0.434 and $0.448 \AA$, respectively. The $\mathrm{Fe}-\mathrm{S}$ bond distance of 2.299 (3) \AA in the title complex is $0.025 \AA$ shorter than the corresponding distance in Fe (ppixdme) $\left(p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}\right)$. The large thermal parameters observed for the benzenethiolate C atoms in Fe (oep)$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}\right)$ reflect the freedom of motion of this axial ligand within the crystal lattice and do not appear to be associated with the disorder of the $\mathrm{C}(27)-\mathrm{C}(28)$ ethyl group.

This work was supported by a grant from the National Science Foundation (CHE 81-10285) and by the donors of the Petroleum Research Fund administered by the American Chemical Society (11450-AC3,4).

References

Blumberg, W. E. \& Peisach, J. (1971). Probes and Structure and Function of Macromolecules and Membranes, Vol. 2, edited by B. Chance, T. Yonetani \& A. S. Mildran, pp. 215-229. New York: Academic Press.
Byrn, M. P. \& Strouse, C. E. (1981). J. Am. Chem. Soc. 103, 2633-2635.
Collman, J. P. \& Groh, S. H. (1982). J. Am. Chem. Soc. 104, 1391-1403.
Cullen, D. L. \& Meyer, E. F. (1976). Acta Cryst. B32, 2259-2269.
Dolphin, D. (1979). Editor. The Porphyrins, Vol. VII, ch. 7. New York: Academic Press.
Einstein, F. W. B. \& Willis, A. C. (1978). Inorg. Chem. 17, 3040-3045.
hamor, T. A., Caughy, W. S. \& Hoard, J. L. (1965). J. Am. Chem. Soc. 87, 2305-2312.
Hoard, J. L. (1971). Science, 174, 1295-1302.
Hoard, J. L., Cohen, G. H. \& Glick, M. D. (1967). J. Am. Chem. Soc. 89, 1992-1996.
Hoard, J. L., Hamor, M. J., Hamor, T. A. \& Caughy, W. S. (1965). J. Am. Chem. Soc. 87, 2312-2319.

Hoffman, A. B., Collins, D. M., Day, V. W. \& Fleischer, E. B. (1972). J. Am. Chem. Soc. 94, 3620-3626.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Koenig, D. M. (1965). Acta Cryst. 18, 663-673.
Little, R. G. \& Ibers, J. A. (1974). J. Am. Chem. Soc. 96, 4452-4458.
Masuda, H., Taga, T., Osaki, K., Sugimoto, H., Yoshida, Z. \& Ogoshi, H. (1980). Inorg. Chem. 19, 950-955, and references therein.
Scheidt, W. R. (1977). Acc. Chem. Res. 10, 339-345.
Scheidt, W. R. \& Geiger, D. K. (1982). Inorg. Chem. 21 , 1208-1211.

Scheidt, W. R. \& Reed, C. A. (1981). Chem. Rev. 81, 543-555.
Strouse, C. E. (1976). Rev. Sci. Instrum. 47, 871-876.
Takenaka, A., Sasada, Y., Watanabe, E., Ogoshi, H. \& Yoshida, Z. (1972). Chem. Lett. pp. 1235-1238.
Tang, S. C., Koch, S., Papaefthymiou, G. C., Foner, S., Frankel, R. B., Ibers, J. A. \& Holm, R. H. (1976). J. Am. Chem. Soc. 98, 2414-2434.
UCLA Crystallographic Package (1983). Univ. of California, Los Angeles.

Acta Cryst. (1984). C40, 1327-1328

Structure of mer-Trichlorotris(pyridine)rhodium(III), $\left[\mathrm{RhCl}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{3}\right]^{*}$

By K. R. Acharya, S. S. Tavale and T. N. Guru Row

National Chemical Laboratory, Pune-411 008, India
(Received 28 November 1983; accepted 29 March 1984)

Abstract

M_{r}=443.45\), monoclinic, $P 2_{1} / n, \quad a=$ 9.008 (2), $\quad b=12.457$ (2),$\quad c=15.445$ (2) $\AA, \quad \beta=$ $90.87(2)^{\circ}, \quad V=1732.9 \AA^{3}, \quad Z=4, \quad D_{m}$ (flotation) $=$ 1.63, $D_{x}=1.65 \mathrm{Mg} \mathrm{m}^{-3}$, Mo $K \alpha, \lambda=0.7107 \AA, \mu$ $=13.74 \mathrm{~mm}^{-1}, F(000)=888 \cdot 0, T=293 \mathrm{~K}, R=0.052$ for 1171 reflections. The rhodium atom has nearly regular octahedral coordination with three meridional chlorines with bond lengths $\langle\mathrm{Rh}-\mathrm{Cl}\rangle=2.334$ (5) and $\langle\mathrm{Rh}-\mathrm{N}\rangle=2.057$ (13) \AA. The three pyridine moieties are planar and are nearly perpendicular to each other. The molecules are held together by van der Waals forces.

Introduction. Rhodium complexes with pyridine have not been well studied in spite of their growing importance as homogeneous catalysts, e.g. for carbonylation of nitro compounds (Hammond \& Franco, 1974). It is often desirable to use catalysts with well defined structures so that a suitable mechanism for the reaction can be evolved. In this context, the structure of $\mathrm{Rh}(\mathrm{py})_{3} \mathrm{Cl}_{3}$ has been studied.

Experimental. Synthesis from $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and pyridine (Chaudhari \& Rode, 1983); crystal (orange colour, needle shape) approximate dimensions $0.18 \times$ $0.15 \times 0.25 \mathrm{~mm}$ used for data collection; lattice parameters from 25 reflections ($12<2 \theta<35^{\circ}$); intensity data collected on Enraf-Nonius CAD-4F-11M single-crystal X-ray diffractometer; graphite-monochromated Mo $K \alpha$ radiation; 3 standard reflections (060 , $402,0 \overline{4} 8$),$\leq 5 \%$ intensity variation; $\omega / 2 \theta$ scan mode; scan speed $1^{\circ} \mathrm{min}^{-1} ; \theta \leq 24^{\circ} ; 3054$ reflections collected, 1171 judged significant ($\left.\left|F_{o}\right| \geq 3 \sigma\left|F_{o}\right|\right) ; h 0-10, k$ $0-13, l 0- \pm 17$; no correction for absorption; structure solved by direct methods using MULTAN78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson,

[^2]0108-2701/84/081327-02\$01.50
1978); Fourier map based on rhodium peak and four other peaks which formed the right kind of geometry revealed the entire structure. Full-matrix refinement of scale factor, positional and anisotropic thermal parameters (isotropic thermal parameters for H atoms, located from difference map) converged to $R=0.052$ and $R_{w}=0.054 ; ~ \sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ minimized, $w=$ $\left(18.0+1.0\left|F_{o}\right|+0.014\left|F_{o}\right|^{2}\right)^{-1} ;$ atomic scattering factors from International Tables for X-ray Crystallography (1974); max. $\Delta / \sigma=0 \cdot 1$, final $\Delta \rho$ excursions $<|0.3| \mathrm{e} \AA^{-3}$; LALS (Gantzel, Sparks \& Trueblood, 1961) used for refinement.

Discussion. The atomic parameters with their standard deviations for non-H atoms are given in Table 1. Bond lengths and angles are given in Table 2. \dagger Fig. 1 gives a perspective view (ORTEP; Johnson, 1965) of the molecule along with the numbering of atoms. The rhodium has a nearly regular octahedral coordination with three meridional chlorines. The $\langle\mathrm{Rh}-\mathrm{Cl}\rangle$ distance of $2.334(5) \AA$ and $\langle\mathrm{Rh}-\mathrm{N}(\mathrm{py})\rangle$ distance of 2.057 (13) \AA agree well with those reported (Rozière, Lehmann \& Potier, 1979; Murray-Rust, 1977).This coordination around rhodium particularly resembles that in trichloro(dimethyl sulfoxide)bis(pyridine)rhodium (Colamarino \& Orioli, 1976) with $\langle\mathrm{Rh}-\mathrm{Cl}\rangle$ distance of 2.334 (5) \AA and $\langle\mathrm{Rh}-\mathrm{N}(\mathrm{py})\rangle$ distance of 2.052 (13) \AA, the averages being over the two independent molecules. The planar pyridine moieties are nearly perpendicular to each other and their geometry is in good agreement with the structure of trans-dichlorotetrakis(pyridine)rhodium(III)

[^3]© 1984 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom positions, porphyrin, ethyl, and phenyl bond distances and bond angles, and perpendicular displacements from the 24 -atom porphyrin-core least-squares plane have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39373 (23 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

[^2]: * NCL Communication No. 3421.

[^3]: \dagger Lists of structure factors, anisotropic thermal parameters, H -atom parameters and least-squares-planes' information have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39349 (16 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

